1.

The diagram shows a sketch of a curve.
The point $P(x, y)$ lies on the curve.
The locus of P has the following property:
The distance of the point P from the point $(0,2)$ is the same as the distance of the point P from the x-axis.

Show that $y=\frac{1}{4} x^{2}+1$
2. (a) On the grid below, draw the graphs of

$$
x^{2}+y^{2}=100
$$

and

$$
\begin{equation*}
2 y=3 x-4 \tag{3}
\end{equation*}
$$

(b) Use the graphs to estimate the solutions of the simultaneous equations

$$
x^{2}+y^{2}=100
$$

and

$$
2 y=3 x-4
$$

For all the values of x

$$
x^{2}+6 x=(x+3)^{2}-q
$$

(c) Find the value of q.

$$
q=
$$

One pair of integer values which satisfy the equation

$$
x^{2}+y^{2}=100
$$

is $x=6$ and $y=8$
(d) Find one pair of integer values which satisfy

$$
x^{2}+6 x+y^{2}-4 y-87=0
$$

\qquad

(Total 10 marks)

1. Distance from x axis is y.

Distance from $(0,2)$ is $\sqrt{ }\left(x^{2}+(y-2)^{2}\right)$
$y^{2}=x^{2}+(y-2)^{2}$
$y^{2}=x^{2}+y^{2}-4 y+4$
$0=x^{2}-4 y+4$
$4 y=x^{2}+4$ and finish
4
B1 for $(x-0)^{2}+(y-2)^{2}$ or $\sqrt{ }\left((x-0)^{2}+(y-2)^{2}\right.$ oe seen B1 for $y=\sqrt{(x-0)^{2}+(y-2)^{2}}$
or $y^{2}=(x-0)^{2}+(y-2)^{2}$ oe
B1 $(y-2)^{2}=y^{2}-4 y+4$ seen
B1 for $4 y=x^{2}+4$ and finish
2. (a) Circle centre O Line

B1 correct circle, within overlay
B2 correct line tol $\pm 1 \mathrm{~mm}$ at $(4,4)$ and ($0,-2$)
(B1 for any straight line with the correct intercept on the y axis)
(b) $x=6.4$,
$y=7.7$
$x=-4.6$,
$y=-8.9$
B2 Two paired solutions, ft from a line and a curve with at least B1 scored in (a)
B1 Any two correct values, ft from a line and a curve with at least B1 scored in (a)
Tol ± 0.2
(c) $\quad q=9$

$$
\begin{aligned}
(x+3)^{2}-9 & \\
& \text { B1 for } x^{2}+6 x+9 \text { seen } \\
& \text { B1 for } q=9
\end{aligned}
$$

(d) 3,10

$$
\begin{aligned}
& (x+3)^{2}-9+(y-2)^{2}-4-87=0 \\
& (x+3)^{2}+(y-2)^{2}=100 \\
& \text { M1 for completing the square } \\
& \text { Al for }(y-2)^{2}-4 \text { seen } \\
& \text { Al any correct answer }
\end{aligned}
$$

1. This proved to be very difficult for the candidature. Most candidates if they did anything, substituted values into the equation and tried to show that they were on a curve which satisfied the description. Many candidates thought that this was a question about $y=m x+c$.
2. This was a long thematic question which most candidates were able to score some marks on. Part (a) required the candidates to draw a circle and a straight line. The circle was rarely recognised and many candidates were unable to draw the straight line. A sizable minority of candidates 'simplified' the circle equation to
' $x+y=10$ '.
Part (b) required candidates to identify the point (s) of intersection of their graphs.
Part (c) was a standard completing the square and the success rate was pleasingly high. A few candidates found the value of q in the identity by substituting a value of x into the identity and then solving for q.
Part (d) was intended to follow the theme of completing the square and linking to the equation of a circle. Most candidates wisely ignored this idea and used their calculator to search out a suitable combination of values.
